Oxidative Dehydrogenation of Ethane to Ethene over BaOand BaBr₂-Modified Ho₂O₃ Catalysts

C. T. Au, 1 K. D. Chen, 2 H. X. Dai, Y. W. Liu, J. Z. Luo, and C. F. Ng

Chemistry Department and Center for Surface Analysis and Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China

Received December 29, 1997; revised July 20, 1998; accepted July 21, 1998

The addition of BaBr₂ (<70 mol%) to Ho₂O₃ could improve considerably both the C₂H₆ conversion and C₂H₄ selectivity of the ODE (oxidative dehydrogenation of ethane) reaction. The use of BaO as a modifier was not suitable because the catalyst degraded rapidly due to BaCO₃ formation. At 640°C, $C_2H_6: O_2: N_2 = 2:1:4$, and space velocity = 6000 mL h⁻¹ g⁻¹, C_2H_6 conversion of 70.6%, C_2H_4 selectivity of 80.2%, and C2H4 yield of 56.6% were observed over the 50 mol% BaBr₂/Ho₂O₃ catalyst after a reaction time of 1 h. We conclude that the addition of BaBr₂ to Ho₂O₃ can (i) enhance oxygen activation, (ii) protect a certain amount of active basic sites from CO₂ poisoning, and (iii) suppress C₂H₄ deep oxidation. It is possible that the presence of Br⁻ ions could have induced the formation of new active sites suitable for C₂H₄ generation. However, we observed continuous leaching of bromine during the ODE reaction, and the 50 mol% BaBr₂/Ho₂O₃ catalyst gradually degenerated to a somewhat aged BaO/Ho₂O₃ catalyst. After 40 h of reaction, the C₂H₆ conversion, C₂H₄ selectivity, and C₂H₄ yield diminished to 51.8, 63.8, and 33.0%, respectively. © 1998 Academic Press

INTRODUCTION

The oxidative dehydrogenation of ethane (ODE) to ethene is a very important chemical process as ethene is the starting material for the production of valuable chemicals such as styrene, ethylbenzene, ethanol, acetaldehyde, vinyl acetate, etc. In the past years, many researchers have studied the ODE reaction over catalysts such as Li/MgO (1, 2), Re₂O₃ (rare earth oxides) (3, 4), M-Mo/SiO₂ (M = Li, Na, K, Rb, Cs) (5), M-V/SiO₂ (M=Li, Na, K, Rb, Cs) (6), Na/CeO₂ (7), La_{1-x}Sr_xFeO_{3- δ} (8), M-ZSM-5 (M=Nb, V, Co, Cu) (9), SmOF (10). Among the catalysts studied, perhaps the most effective ones were the "Li/MgO" catalysts reported by Lunsford's group in numerous publications. To cite one as an example (1), with the reaction conditions of 620° C, $C_2H_6: O_2: He = 290: 290: 180$ (torr), gas flow rate = 60 mL min^{-1} , total pressure = 760 torr, and 5 gcatalyst, they obtained 75% ethane conversion and 77% ethene selectivity (i.e. 58% ethene yield) over a Li⁺-MgO-Cl⁻ catalyst with a ratio of Cl/Li \geq 0.9 after 50 h on stream. Later, they found that the addition of a certain amount of lanthanide oxides (e.g., Dy₂O₃) to the catalyst could lower the reaction temperature to 570°C with the performance almost unchanged (11).

Being one of the secondary reactions of the oxidative coupling of methane (OCM), the ODE process has been studied along with the OCM reaction by many researchers (e.g. (2, 4, 7, 12, 13)). It has been found that some OCM catalysts with high C₂H₄/C₂H₆ ratio are also good ODE catalysts (2). In the studies of the OCM reaction, several groups have achieved large ethene-to-ethane ratio by introducing chlorine into the catalyst or by passing a chlorine-containing compound over the catalyst during the reaction (14-18). Based on these results, many chlorine-containing catalysts were studied for the ODE reaction with the promotion effects of chlorine being cited. As suggested by Lunsford et al. (2), the presence of Cl⁻ ions in the catalyst might improve the catalytic activity by preventing the active sites from CO₂ poisoning; the Cl⁻ ions could also lower the reactivity of oxygen species so that they were capable of activating the weaker C-H bond in ethane (98 kcal mol⁻¹), but were less effective in activating the stronger C-H bond in ethene (>108 kcal mol⁻¹). In our laboratory, we have studied the OCM performances of a number of La-Ba-X (19-22), Y-Ba-X(23, 24), and Ho-Ba-X(X = F, Cl, Br) (25) catalysts; the results indicated that the addition of halides, especially bromine, on some rare earth oxide catalysts could significantly enlarge the ethene-to-ethane ratio. For example, the C₂H₄/C₂H₆ ratio in OCM reaction at 750°C was augmented from 1.4 to 10.6 when 50 mol% of BaBr₂ was added to Ho₂O₃ (25). We envisaged that the catalysts with high ethene-to-ethane ratio in the OCM reaction might also be good catalysts for the ODE reaction. In this paper, we report the promotion effects of BaBr₂ on Ho₂O₃ in this aspect.

EXPERIMENTAL

The BaBr₂/Ho₂O₃, 50 mol% MO/Ho_2O_3 (M=Mg, Ca, Sr, and Ba), and 50 mol% BaCO₃/Ho₂O₃ catalysts were

 $^{^{\}rm 1}\,\rm To$ whom correspondence should be addressed. E-mail: pctau@hkbu.edu.hk.

 $^{^2}$ Present address: Department of Chemical Engineering, UC Berkeley, CA 94720.

prepared by wet-impregnation of Ho_2O_3 powder, respectively, with aqueous solution of BaBr_2 , $M(\text{NO}_3)_2$ (M=Mg, Ca, Sr, and Ba), and BaCO_3 followed by evaporation. The pastes were dried at 120°C overnight and calcined at 800°C for 5 h before being ground, tableted, crushed, and sieved into 40--80 mesh.

The ODE reactions were carried out with 0.5 g of the catalyst in a fixed-bed quartz flow micro-reactor (ID = 4 mm) at atmospheric pressure. The reaction temperatures ranged from 500 to 660°C at 20°C intervals. A mixture of ethane and air was passed through the micro-reactor. The flow-rate was regulated by a mass flow controller and was 14.8 mL min $^{-1}$ for ethane, and 35.2 mL min $^{-1}$ for air; giving a space velocity of 6000 mL h^{-1} g $^{-1}$ and a C_2H_6/O_2 molar ratio of 2/1. For the studies of C_2H_4 oxidation, a mixture of C_2H_4 and air was used, instead, to make up a C_2H_4/O_2 molar ratio of 2/1. The product distribution was determined by a Shimadzu 8A TCD gas chromatograph with Porapark Q and 5A molecular sieve columns.

For the studies of effects of space velocity on the performances of the catalysts, the reactant gas (C_2H_6/O_2 molar ratio, 2/1) was carried into the micro-reactor in pulses (pulse size, 65.7 μ L) by helium at space velocities ranging from 1500 to 6000 mL h⁻¹ g⁻¹. The product distribution was determined on line by a HP G1800A mass spectrometer.

The phase compositions of the catalysts were determined by X-ray diffraction (XRD, D-MAX, Rigaku), whereas X-ray photoelectron spectroscopy (XPS, Leybold Heraeus-Shengyang SKL-12) was used to characterize the surface. The specific surface areas of the catalysts were measured and calculated according to the BET method. The continuous flow chromatographic technique was adopted with helium as the carrier gas and nitrogen as the adsorbate.

For the O₂- and CO₂-TPD studies, the samples (0.2 g) were placed in the middle of a quartz micro-reactor with 4-mm ID. The outlet gases were analyzed on line by mass spectrometry (HP G1800A). The heating rate was 15°C min⁻¹ and the temperature range was from room temperature to 800°C. Before performing the O₂- TPD experiments, the samples were first calcined in situ at 800°C for 30 min under an oxygen flow of 15 mL min⁻¹ followed by cooling in oxygen to room temperature and then purging with helium (flow rate, 20 mL min⁻¹) for 30 min. Before the CO₂- TPD experiments, the catalysts were first calcined in situ at 800°C for 20 min under an oxygen flow of 15 mL min⁻¹, followed by purging with helium (20 mL min⁻¹) for 30 min and cooling in helium to room temperature, before exposure to a flow of CO2 gas (20 mL min⁻¹) for 10 min at room temperature and helium purging afterward for 20 min.

The measurement of the amount of reducible oxygen was also performed on the MS (HP G1800A) system. The catalyst (0.2 g) was placed in a quartz reactor and was first reduced in H_2 at 800° C for 1 h, followed by helium purging

(flow rate, 20 mL min $^{-1}$) for 10 min and then O_2 -pulsing at the same temperature. The pulse size of O_2 was 65.7 μ L (at 25°C, 1 atm). We kept on pulsing O_2 over the reduced sample until, after passing the catalyst, there was no observable decrease in the O_2 pulse size. The total amount of O_2 absorbed by the catalyst was then calculated and expressed in moles per gram of catalyst.

Temperature-programmed reduction (TPR) was conducted by using a $7\%~H_2-93\%~N_2$ (v/v) mixture. The flow rate of the carrier gas was $50~\text{mL}~\text{min}^{-1}$ and a thermal conductivity detector was used. The amount of sample used was 0.2~g and the heating rate was $10^{\circ}\text{C}~\text{min}^{-1}$. Before performing the TPR experiments, the sample was first calcined *in situ* at 800°C for 30~min under an oxygen flow of $15~\text{mL}~\text{min}^{-1}$, followed by cooling in oxygen to room temperature.

For the analysis of bromine content, the catalyst was first digested in 0.1 M NaOH solution. The resulting solution was neutralized by 2 M HNO $_3$ solution and titrated against standardized AgNO $_3$ solution using 0.005 M potassium chromate as indicator.

RESULTS

Catalytic Performance

Table 1 shows the ODE performances of Ho_2O_3 , $50 \text{ mol}\% \ MO/Ho_2O_3$ (M=Mg, Ca, Sr, and Ba), and $50 \text{ mol}\% \ BaCO_3/Ho_2O_3$ catalysts at 640° C. For pure Ho_2O_3 , oxygen conversion was 84.7%, ethane conversion was 43.4%, and C_2H_4 selectivity was 51.4%, giving a C_2H_4 yield of 22.3%. The use of MO (M=Mg, Ca, Sr, and Ba) as modifiers showed negative effects. For the four $50 \text{ mol}\% \ MO/Ho_2O_3$ catalysts, C_2H_6 conversions and C_2H_4 selectivities were lower than those of the undoped Ho_2O_3 , but the oxygen conversions were higher (>98%). C_2H_4 yield was 13.4% over the $50 \text{ mol}\% \ MgO/Ho_2O_3$ catalyst and was ca 21% over the other three MO/Ho_2O_3 catalysts. We found

TABLE 1 ODE Performances after an On-Stream Time of 1 h over Ho_2O_3 , 50 mol% MO/Ho_2O_3 (M=Mg, Ca, Sr, and Ba) and 50 mol% $BaCO_3/Ho_2O_3$ at $640^{\circ}C$

	Conversion (%)		Selectivity (%)			Yield (%)	Rate of C ₂ H ₆ reaction (10 ¹⁸ molecules	
Catalyst	C_2H_6	O_2	CO_x	CH ₄	C_2H_4	C_2H_4	$m^{-2} s^{-1}$)	
Blank ^a	5.0	_	12.0	0	88.0	4.4		
Ho_2O_3	43.4	84.7	46.8	1.8	51.4	22.3	4.43	
MgO/Ho ₂ O ₃	33.7	99.4	58.7	1.6	39.7	13.4	3.72	
CaO/Ho ₂ O ₃	40.9	98.8	47.6	2.2	50.2	20.6	4.52	
SrO/Ho ₂ O ₃	42.2	98.5	48.8	2.6	48.5	20.5	4.66	
BaO/Ho ₂ O ₃	41.2	98.7	46.4	2.8	50.8	20.9	4.97	
BaCO ₃ /Ho ₂ O ₃	40.8	98.8	46.7	2.9	50.4	20.6	_	

^a Tested at 660°C.

TABLE 2 ODE Performances after an On-Stream Time of 1 h over 50 mol% BaX_2/Ho_2O_3 (X = F, Cl, and Br) at 640°C

	Conve		S	Selectivity (%)			Rate of C ₂ H ₆ reaction (10 ¹⁸ molecules	
Catalyst	C_2H_6	O_2	CO_x	CH ₄	C ₂ H ₄	(%) C ₂ H ₄	$m^{-2} s^{-1}$)	
BFH	47.1	98.6	34.9	2.0	63.2	29.8	5.20	
BCH	55.9	96.4	30.1	2.0	67.8	37.9	6.18	
BBH	70.6	93.9	17.4	2.4	80.2	56.6	7.80	

Note. BFH: BaF₂/Ho₂O₃; BCH: BaCl₂/Ho₂O₃; BBH: BaBr₂/Ho₂O₃.

that after an on-stream time of 1 h, a 50 mol% BaO/Ho₂O₃ catalyst behaved exactly as a 50 mol% BaCO₃/Ho₂O₃ catalyst.

The performances of the 50 mol% BaX_2/Ho_2O_3 (X=F, Cl, and Br) catalysts after 1 h of ODE reactions at 640°C are shown in Table 2. It could be observed that the performances of the BaX_2 -promoted samples were better than that of pure Ho₂O₃. For the three 50 mol% BaX₂/Ho₂O₃ catalysts, the C₂H₆ conversion and C₂H₄ selectivity followed the sequence of 50 mol% BaBr₂/Ho₂O₃ > 50 mol% $BaCl_2/Ho_2O_3 > 50 \text{ mol}\%$ BaF_2/Ho_2O_3 . For the 50 mol% BaBr₂/Ho₂O₃ catalyst, oxygen conversion was 93.9%, ethane conversion was 70.6%, and C₂H₄ selectivity was 80.2%, giving a C₂H₄ yield of 56.6%. A 90 mol% BaBr₂/ Ho_2O_3 catalyst performed rather poorly; the O_2 and C_2H_6 conversions were, respectively, ca 64 and 41%, and the C₂H₄ selectivity was ca 90%, giving a C₂H₄ yield of ca 37%.

Table 3 shows the catalytic performances of the pure Ho₂O₃, 50 mol% BaO/Ho₂O₃, and 50 mol% BaBr₂/Ho₂O₃

TABLE 3 The Catalytic Performances of the Undoped Ho₂O₃, 50 mol% BaO/Ho₂O₃, and 50 mol% BaBr₂/Ho₂O₃ Catalysts as Related to the Space Velocity of a C₂H₆/O₂ Pulse at 640°C

	Space velocity	Conversion (%)		Selectivity (%)			Yield (%)
Catalyst	$(mL h^{-1} g^{-1})$	C_2H_6	O_2	$\overline{\text{CO}_{x}}$	CH ₄	C ₂ H ₄	C_2H_4
Ho ₂ O ₃	1,500	68.9	86.2	67.1	0.4	32.5	22.4
	3,000	66.6	65.4	62.4	0.8	36.8	24.5
	4,500	63.8	55.6	62.2	0.9	36.9	23.5
	6,000	63.4	50.1	60.2	1.0	38.8	24.6
BaO/Ho ₂ O ₃	1,500	70.1	90.5	64.8	0.6	34.6	24.3
2 0	3,000	68.3	70.0	59.3	0.8	39.9	27.3
	4,500	65.8	59.9	58.0	0.9	41.1	27.0
	6,000	65.4	58.8	56.5	1.0	42.5	27.8
BaBr ₂ /Ho ₂ O ₃	1,500	73.1	99.9	42.9	0.4	56.7	41.4
2 2 3	3,000	71.5	77.7	39.0	0.8	60.2	43.0
	4,500	65.9	56.1	38.6	0.8	60.6	39.9
	6,000	65.5	50.9	38.2	0.9	60.9	39.9

TABLE 4 Results of the Oxidation of Ethane and Ethene after an On-

Stream Time of 1 h over Ho₂O₃, 50 mol% BaO/Ho₂O₃, and 50 mol% BaBr₂/Ho₂O₃ Catalysts at 640°C

	Oxidation of C_2H_4	Oxidation of C_2H_6		
Catalyst	C ₂ H ₄ conv. (%)	C ₂ H ₆ conv. (%)	C ₂ H ₄ sel. (%)	
Ho ₂ O ₃	29.2	43.4	51.4	
50 mol% BaO/Ho ₂ O ₃	31.8	41.2	50.8	
10 mol% BaBr ₂ /Ho ₂ O ₃	26.0	54.8	65.8	
50 mol% BaBr ₂ /Ho ₂ O ₃	17.5	70.6	80.2	

samples when pulses of C₂H₆/O₂ were carried to the catalysts at 640°C by helium flows with space velocities ranging from 1500 to 6000 mL h⁻¹ g⁻¹. The experiments were designed in such a way that the occurrences of hot spots and Br leaching during the time of evaluation were minimized. One can see that over the three catalysts, both O_2 and C₂H₆ conversions decreased while the C₂H₄ selectivity increased with the increase in space velocity. The data in Table 3 also illustrate that at space velocities equal to or higher than 3000 mL h⁻¹ g⁻¹, where O₂ conversions were less than 80%, the 50 mol% BaBr₂/Ho₂O₃ catalyst was superior to the other two catalysts in C₂H₄ selectivity and yield. In other words, the good yield of C₂H₄ over the BaBr₂promoted catalyst is attributable to real catalysis and real chemistry of the catalyst.

The results of the oxidation of ethene and ethane over various catalysts are listed in Table 4. It is apparent that the addition of BaBr₂ to Ho₂O₃ would inhibit significantly the oxidation of C₂H₄, but enhance both the conversion of C₂H₆ and selectivity of C₂H₄ in the ODE reaction. For the four catalysts tested, C₂H₄ conversion in C₂H₄ oxidation followed the sequence of 50 mol% $BaBr_2/Ho_2O_3 < 10$ mol% $BaBr_2/Ho_2O_3 < Ho_2O_3 < 50 \ mol\% \ BaO/Ho_2O_3$, whereas C_2H_4 selectivity and C_2H_6 conversion in C_2H_6 oxidation over the catalysts showed the reverse order.

Figure 1 shows the catalytic performance of the 50 mol% BaBr₂/Ho₂O₃ catalyst at 640°C as related to reaction time. One can see that the values of C₂H₆ conversion, C₂H₄ selectivity, and C₂H₄ yield decreased gradually within the first 35 h, and then stayed nearly unchanged in the last 5 h, with C₂H₆ conversion, C₂H₄ selectivity, and C₂H₄ yield equal to 51.8, 63.8, and 33.0%, respectively. The performance of a 50 mol% BaO/Ho₂O₃ catalyst was rather stable from an on-stream time of 1 to 40 h; the C₂H₆ conversion, C₂H₄ selectivity, and C₂H₄ yield stayed at ca 41, 51, and 21%, respectively.

XRD, BET, XPS, and Bromine Content Studies

XRD results of the 50 mol% BaO/Ho₂O₃ and 50 mol% BaBr₂/Ho₂O₃ catalysts are shown in Table 5. For the fresh

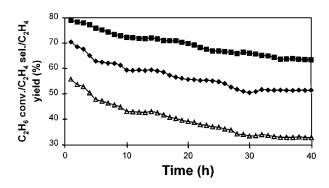


FIG. 1. The catalytic performance of 50 mol% $BaBr_2/Ho_2O_3$ as related to reaction time: (\blacksquare) C_2H_4 selectivity; (\spadesuit) C_2H_6 conversion; (\triangle) C_2H_4 yield.

 $50\,mol\%~BaBr_2/Ho_2O_3$ catalyst, no new phases such as barium and holmium oxybromides were observed besides the monoclinic $BaBr_2\cdot 2H_2O$ and cubic Ho_2O_3 phases. After 40~h of ODE reaction, lines due to $BaCO_3$ were observed. For the fresh $50~mol\%~BaO/Ho_2O_3$ catalyst, there were the phases of $BaO,~BaCO_3,~and~Ho_2O_3.$ After the ODE reaction, the BaO phase disappeared due to the conversion of BaO to $BaCO_3.$

Based on the d values of XRD peaks, the Ho₂O₃ lattice parameters, a_0 , of various samples were calculated. It was found that the lattice parameter of Ho₂O₃ in the BaBr₂- or BaO-doped samples was larger than that of the undoped Ho₂O₃. Figure 2 shows the changes of a_0 in the BaBr₂/Ho₂O₃ catalysts. It can be seen that with the increase of BaBr₂ loading, a_0 increased too. The length (a_0) of the cubic unit cell edge of Ho₂O₃ is 10.606 Å. For the 50 mol% BaBr₂/Ho₂O₃ and 50 mol% BaO/Ho₂O₃ catalysts, a_0 values were 10.618 and 10.612 Å, respectively. Compared to the fresh ones, the samples measured after 40 h of ODE reactions showed little changes in a_0 values.

BET surface areas of the Ho_2O_3 , 50 mol% BaO/ Ho_2O_3 , and 50 mol% BaBr₂/ Ho_2O_3 samples were measured. The specific surface area of pure Ho_2O_3 was 1.3 m² g⁻¹. The spe-

TABLE 5

XRD Results of 50 mol% BaO/Ho₂O₃ and 50 mol% BaBr₂/Ho₂O₃

Catalysts before and after ODE Reaction

	Crystal structure present				
Catalysts	Before reaction	After reaction			
Ho ₂ O ₃	Ho ₂ O ₃ (s)	Ho ₂ O ₃ (s)			
50 mol% BaO/Ho ₂ O ₃	Ho_2O_3 (s), BaO (m), BaCO ₃ (w)	Ho_2O_3 (s), $BaCO_3$ (m)			
50 mol% BaBr ₂ /Ho ₂ O ₃	Ho_2O_3 (s), $BaBr_2 \cdot 2H_2O$ (m)	Ho_2O_3 (s), $BaCO_3$ (w), $BaBr_2 \cdot 2H_2O$ (m)			

Note. Ho_2O_3 is cubic. BaO is tetragonal. $BaCO_3$ is orthorhombic. $BaBr_2 \cdot 2H_2O$ is monoclinic. s, strong; m, medium; w, weak.

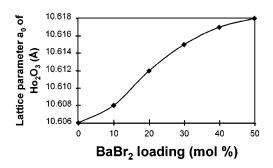


FIG. 2. The change of the lattice parameter, a_0 , of Ho_2O_3 in $BaBr_2/Ho_2O_3$ catalysts as related to $BaBr_2$ loading.

cific surface areas of the 50 mol% BaO/Ho $_2$ O $_3$ and 50 mol% BaBr $_2$ /Ho $_2$ O $_3$ catalysts were 1.1 and 1.2 m 2 g $^{-1}$, respectively; a little bit smaller than that of pure Ho $_2$ O $_3$. There were little changes in specific surface area of the samples during the ODE reaction as indicated by the BET measurements performed after the ODE reaction.

Based on the XPS peak areas and the atomic sensitivity factors of the elements, the surface bromine compositions of a 50 mol% $BaBr_2/Ho_2O_3$ catalyst before and after ODE reactions of 4 h, 20 h, and 40 h were calculated and are shown in Table 6. One can see that the surface bromine composition decreased continuously with reaction time. After 40 h, the surface bromine composition decreased by ca 75% as compared to the fresh sample.

The results of bromine content analysis of a 50 mol% $BaBr_2/Ho_2O_3$ catalyst before and after ODE reactions of 4 h, 20 h, and 40 h are also shown in Table 6. It can be observed that the bromine composition of the catalyst also decreased continuously during the reaction. After 40 h, the total bromine loss was ca 34% of the original content. A 50 mol% $BaBr_2/Ho_2O_3$ catalyst at 640°C in a flow of O_2 (20 mL min⁻¹) for 40 h did not show any loss of Br. Hence, the leaching of Br was not a result of thermal instability of the catalyst.

TPR, O₂-TPD, and O₂-Pulse Studies

TPR profiles of the Ho_2O_3 , 50 mol% BaO/Ho_2O_3 , and 50 mol% $BaBr_2/Ho_2O_3$ samples are shown in Fig. 3. There were two weak reduction peaks at ca 690 and 770°C in the TPR profile of pure Ho_2O_3 . For the 50 mol% $BaBr_2/Ho_2O_3$ sample there were no significant changes in peak position

TABLE 6
Br Content on the Surface and in the Bulk of 50 mol% BaBr₂/Ho₂O₃ Catalyst before (BR) and after ODE Reaction of 4 h (AR4), 20 h (AR20), and 40 h (AR40)

	BR	AR4	AR20	AR40
Surface Br content (mol%)	8.0	5.6	2.9	2.0
Bulk Br content (wt%)	22.1	19.4	16.2	14.6

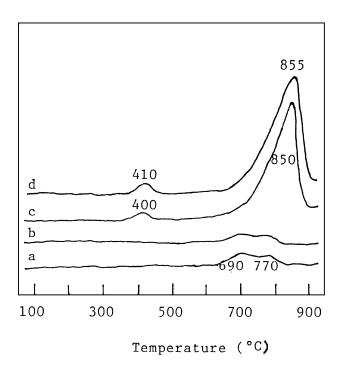


FIG. 3. TPR profiles of (a) Ho_2O_3 , (b) 50 mol% $BaBr_2/Ho_2O_3$, (c) 50 mol% BaO/Ho_2O_3 catalysts, and (d) a 50 mol% BaO/Ho_2O_3 catalyst with H_2 pretreatment at 850°C.

and peak shape, compared to that of Ho_2O_3 . There was a slight decrease in the peak area, indicating that there was a lesser amount of reducible oxygen in the sample. For the 50 mol% BaO/Ho_2O_3 catalyst, a weak reduction peak was detected at ca $400^{\circ}C$ and a strong one was observed at ca $850^{\circ}C$. Pretreating the 50 mol% BaO/Ho_2O_3 catalyst in a flow of H_2 (20 mL min⁻¹) for 1 h at $850^{\circ}C$ before O_2 calcining would give a TPR spectrum of similar profile. Since carbonates that were unstable at or below $850^{\circ}C$ would have already been removed in H_2 -pretreatment, the reduction peak at $850^{\circ}C$ was genuinely due to the removal of oxygen from the catalyst.

In order to estimate the amount of reducible oxygen existing in the Ho₂O₃, 50 mol% BaO/Ho₂O₃, and BaBr₂/ Ho₂O₃ catalysts, the samples were first reduced in H₂ at 800°C and then pulses of O₂ were passed through the catalysts at the same temperature. From the amount of O₂ absorbed, one could estimate indirectly the amount of oxygen removed in H₂-reduction. The idea was based on the assumption that the vacancies generated in H₂-reduction would be occupied eventually by oxygen ions during O₂ pulsing. Table 7 shows the amount of O₂ absorbed at 800°C before the occurrence of zero diminution in O₂ pulse size over the catalysts. It is clear that the amount of reducible oxygen in the 50 mol% BaO/Ho₂O₃ sample was much larger than that in the undoped Ho₂O₃. The amount of oxygen atoms removed from the fresh 50 mol% BaO/Ho₂O₃ sample during H_2 treatment at 800° C was 25.6×10^{-6} mol g^{-1} .

TABLE 7

The Amount of Oxygen Absorbed at 800°C over the H₂-reduced (800°C) Ho₂O₃, BaBr₂/Ho₂O₃, and 50 mol% BaO/Ho₂O₃ Catalysts

Catalyst	Ho ₂ O ₃	ВОН	BBH10	BBH50	BBH90
O_2 absorption ($10^{-6} \text{ mol g}^{-1}$)	5.2	12.8	5.1	3.0	0.7

Note. BOH: 50 mol% BaO/Ho₂O₃; BBH10: 10 mol% BaBr₂/Ho₂O₃; BBH50: 50 mol% BaBr₂/Ho₂O₃; BBH90: 90 mol% BaBr₂/Ho₂O₃.

We proposed that the removal of oxygen could be from the surface as well as from the bulk and the catalyst could function in a redox fashion. For the $BaBr_2/Ho_2O_3$ catalysts, the amount of reducible oxygen decreased with the increase in $BaBr_2$ composition, suggesting that with the increase in $BaBr_2$ composition the amount of oxygen that could be reduced in the $BaBr_2/Ho_2O_3$ catalysts decreased.

The O_2 -TPD profiles of pure Ho_2O_3 , 50 mol% BaO/Ho_2O_3 , and $BaBr_2/Ho_2O_3$ catalysts with different $BaBr_2$ compositions are shown in Fig. 4. For pure Ho_2O_3 , there was only one O_2 desorption peak at ca $430^{\circ}C$ in the O_2 -TPD profile. With the addition of $BaBr_2$ to Ho_2O_3 , the desorption peak at $430^{\circ}C$ decreased in area and shifted to ca $480^{\circ}C$ (Figs. 4a–d). For the 50 mol% BaO/Ho_2O_3 catalyst

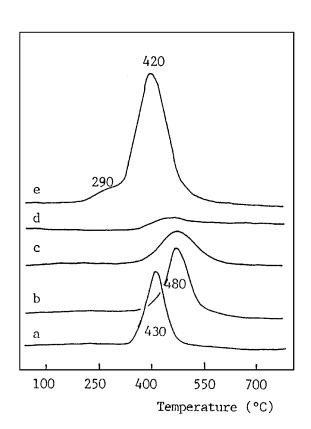


FIG. 4. O₂-TPD profiles of (a) Ho_2O_3 , (b) 10 mol% $BaBr_2/Ho_2O_3$, (c) 50 mol% $BaBr_2/Ho_2O_3$, (d) 90 mol% $BaBr_2/Ho_2O_3$, and (e) 50 mol% BaO/Ho_2O_3 catalysts.

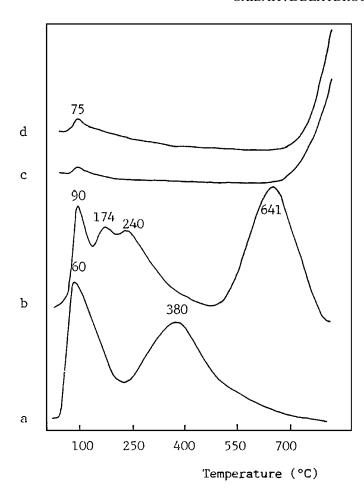


FIG. 5. CO₂-TPD profiles of (a) fresh Ho₂O₃, (b) fresh 50 mol% BaBr₂/Ho₂O₃, (c) 50 mol% BaBr₂/Ho₂O₃ after ODE reaction of 40 h, and (d) 50 mol% BaO/Ho₂O₃ catalysts.

(Fig. 4e), a strong O_2 desorption peak at ca 420° C with a shoulder at ca 290° C was observed, and the total peak area was much bigger than that of the undoped Ho_2O_3 .

CO2-TPD Results

Figure 5 shows the CO_2 -TPD profiles of undoped Ho_2O_3 , 50 mol% BaO/Ho_2O_3 , and 50 mol% $BaBr_2/Ho_2O_3$. Two desorption peaks at ca 60 and $380^{\circ}C$ were detected in the CO_2 -TPD profile of undoped Ho_2O_3 . For the 50 mol% BaO/Ho_2O_3 catalyst, only a very small desorption peak was observed at ca $75^{\circ}C$ and large desorption of CO_2 was observed above $750^{\circ}C$ (Fig. 5d). In the temperature range of 120 to $700^{\circ}C$, there was no CO_2 desorption. The CO_2 -TPD profile of the fresh 50 mol% $BaBr_2/Ho_2O_3$ sample was different from that of Ho_2O_3 or BaO/Ho_2O_3 . Four desorption peaks at ca 90, 174, 240, and 641°C were observed, and the desorption peak at ca 641°C was the largest in area (Fig. 5b). After 40 h of ODE reaction, the CO_2 -TPD profile of the 50 mol% $BaBr_2/Ho_2O_3$ catalyst became very similar to that of a 50 mol% BaO/Ho_2O_3 catalyst (Fig. 5c).

DISCUSSION

Modification of Ho_2O_3 by MO (M = Mg, Ca, Sr, and Ba) and BaX_2 (X = F, Cl, and Br)

Based on the results of catalytic performance, one can see that the undoped Ho₂O₃ catalyst showed moderate catalytic activity and C_2H_4 selectivity (Table 1). The use of MO(M=Mg, Ca, Sr, and Ba) as modifiers exhibited negative effects on Ho₂O₃ (Table 1). We conclude that during the ODE reaction, the MO/Ho₂O₃ catalysts degraded rather rapidly to MCO₃/Ho₂O₃. Taking the BaO/Ho₂O₃ catalyst as an example, the results in Table 3 show that it was superior to Ho₂O₃ in catalytic performance initially. The pulse experiment was conducted with the ageing of the catalyst minimized and the data in Table 3 should represent a "real" 50 mol% BaO/Ho₂O₃ catalyst. The results in Table 1, however, are the activities after an on-stream time of 1 h and the data imply that the ageing of the catalyst was rather rapid and a degraded 50 mol% BaO/Ho₂O₃ catalyst was inferior to Ho₂O₃. As indicated by the XRD results in Table 5, the BaO in the BaO/Ho₂O₃ catalyst changed completely to BaCO₃ during ODE reactions. We believe that similar reaction of carbonate formation happened on the MgO/Ho₂O₃, CaO/Ho₂O₃, and SrO/Ho₂O₃ catalysts. The consequence was the degradation of the catalysts.

The addition of Ba X_2 (X=F, Cl, and Br) to Ho₂O₃ could improve the catalytic performance significantly (Table 2). Among the three 50 mol% BaX₂/Ho₂O₃ catalysts, the BaBr₂-promoted one showed the highest C₂H₆ conversion and C₂H₄ selectivity (Table 2). As shown in Fig. 1, the catalytic activity and C₂H₄ selectivity of the 50 mol% BaBr₂/Ho₂O₃ catalyst decreased with reaction time. The drop in C₂H₆ conversion was not due to surface area variation since the BET surface area of the sample did not change during the 40 h of reaction. Based on the analytical results of bromine contents on the surface as well as in the bulk of the catalyst, we know that there was continuous bromine leaching. It is likely that the relatively high reactivity in the first 35 h was due to Br liberated from the catalyst. A gas phase reaction involving bromine radicals with the catalyst serving as "initiator" is a possible reaction mechanism. XRD investigation (Table 5) showed that BaCO₃ was formed during the ODE reaction. The CO₂-TPD profile of the used sample was rather similar to that of an aged BaO/Ho₂O₃ catalyst (Fig. 5). Hence we suggested that the 50 mol% BaBr₂/Ho₂O₃ catalyst had degraded in the ODE reaction due to the loss of bromine.

Defect Formation and O2 Activation

Based on the results in Fig. 1 and Table 1, one can realize that after 40 h of ODE reactions and a loss of 34% of its original Br content (Table 6), a 50 mol% $BaBr_2/Ho_2O_3$ catalyst still performed better than a Ho_2O_3 catalyst. It is

apparent that the Br⁻ ions in the BaBr₂/Ho₂O₃ catalyst were playing a role in promoting Ho₂O₃. Detailed XRD investigations of the BaBr₂/Ho₂O₃ catalysts revealed that the addition of BaBr₂ to Ho₂O₃ could result in the enlargement of the Ho₂O₃ lattice. Such change in lattice structure of cubic Ho₂O₃ was a result of ionic substitutions. The size of Ba²⁺ ion (radius, 1.43 Å (26)) is larger than that of Ho³⁺ ion (radius, 0.894 Å (26)). If certain amount of Ba^{2+} ions entered into the lattice of Ho₂O₃, due to the facts that Ba²⁺ is larger in size and induces smaller Coulombic force, the occupancy of Ho₂O₃ lattice points by Ba²⁺ ions would cause the Ho₂O₃ lattice to expand. Along with the infiltration of the Ba²⁺ ions, certain amount of O²⁻ ions inside the Ho₂O₃ lattice could be replaced by the incoming Br⁻ ions, and the Ho₂O₃ lattice would enlarge even more. If this happened, an electron would be trapped next to the Br⁻ ion to maintain electric neutrality, and oxygen activation could be enhanced as a result. We have studied the 20 mol% SrF₂/SmOF and BaF₂/SmOF catalysts previously, and found that ionic substitutions of similar nature would induce the formation of trapped electrons, enhancing oxygen activation as a result (27, 28). We have also detected EPR signals of trapped electrons and O_2^- ions over the 5 mol% Y_2O_3/BaF_2 catalyst (24). Osada et al. (29) studied the Y₂O₃/CaO catalysts for the OCM reaction and reported the formation of Y₂O₃-CaO solid solution and lattice distortions of Y₂O₃. They concluded that the increase in C₂₊ selectivity at 600 and 700°C with the addition of Y₂O₃ to CaO was due to the formation of the solid solution of Y₂O₃-CaO and the presence of interstitial oxygen ions O_2^- . The results in Tables 1 and 2 show that the oxygen and C₂H₆ conversions over the 50 mol% BaBr₂/Ho₂O₃ catalyst were higher than those over the pure Ho_2O_3 sample. We suggest that the increase in C_2H_6 conversion could be related to the enhancement in oxygen activation. For a 90 mol% BaBr₂/Ho₂O₃ catalyst, the O₂ and C₂H₆ conversions were, respectively, 64 and 41%, considerably lower than those of undoped Ho₂O₃. From the O₂-TPD (Fig. 4), and O₂-pulse (Table 7) results, one can realise that the amount of oxygen in a 90 mol% BaBr₂/Ho₂O₃ catalyst was much lower than that in a 50 mol% BaBr₂/Ho₂O₃ or Ho₂O₃ catalyst. With the reduction in the amount of activated oxygen, the conversion of C₂H₆ over the catalyst was limited.

Modification of Surface Basicity by Br⁻ Ions

Lunsford *et al.* (1, 2) studied the ODE reaction over the Li-Mg-Cl catalysts, and pointed out that surface basicity was influencing the activities of the catalysts. If the surface basicity of a catalyst was very large, strong CO_2 adsorption would occur on the catalyst surface, resulting in low catalytic activity. For a Li-Mg-Cl catalyst with $Cl/Li \ge 0.9$, they observed that the CO_2 formed during the ODE reaction did not poison the catalyst, and hence the catalytic activity remained high (1, 2). Similar phenomenon was observed in

our studies. For the 50 mol% $BaBr_2/Ho_2O_3$ catalyst, CO_2 -TPD result indicated that a large amount of CO_2 could desorb below 640° C, implying that the catalyst was not strongly basic. Due to the desorption of CO_2 at the reaction temperature (ca 640° C) adopted for the ODE reaction, there were active basic sites available for the reaction.

The main carbon-containing products of the ODE reaction are C_2H_4 , CO, and CO_2 . There are two ways of producing CO and CO_2 . They are the deep oxidations of C_2H_6 and C_2H_4 . By using ^{13}C -labeled C_2H_4 and C_2H_6 , Lunsford *et al.* (30) found that at or above $650^{\circ}C$, C_2H_4 was the major source of CO_x formation. This suggests that if the oxidation of C_2H_4 can be inhibited, C_2H_4 selectivity could improve. From the results of C_2H_4 and C_2H_6 oxidation in Table 4, one can observe that the catalyst which gave lower C_2H_4 conversion in the C_2H_4 oxidation reaction would give higher C_2H_4 selectivity and C_2H_6 conversion in the C_2H_6 oxidation reaction. These results advocate that high C_2H_4 selectivity in ODE reaction over $BaBr_2/Ho_2O_3$ catalysts could be obtained by suppressing the deep oxidation of C_2H_4 .

From Table 3, it could be seen that with the increase of space velocity, the C_2H_4 selectivity increased. This suggested that C_2H_4 deep oxidation could be avoided by shortening the contact time of C_2H_4 on the catalyst surface. From the CO_2 -TPD results, we know that at the adopted reaction temperatures, CO_2 could desorb from the 50 mol% BaBr₂/Ho₂O₃ catalyst, implying that certain amount of medium-to-strong basic sites were still available on the catalyst surface at ODE reaction conditions. Since C_2H_4 molecules normally adsorb on acidic sites, the existence of basic sites would mean poor C_2H_4 adsorption; i.e., the contact time of C_2H_4 on the catalyst surface became shortened. As a result, the chance of C_2H_4 being oxidised was reduced and the selectivity of C_2H_4 was enhanced.

Effects of Limited Oxygen Source

At near 100% oxygen conversion, the increase of C_2H_4 selectivity would mean higher C_2H_6 conversion. The following chemical equations show the oxidation of ethane:

Selective oxidation.

$$C_2H_6 + 1/2O_2 \rightarrow C_2H_4 + H_2O;$$
 [1]

Deep oxidation,

$$C_2H_6 + 5/2O_2 \rightarrow 2CO + 3H_2O$$
 [2]

$$C_2H_6 + 7/2O_2 \rightarrow 2CO_2 + 3H_2O.$$
 [3]

One can see that the deep oxidation reactions, [2] and [3], require more oxygen than the selective oxidation reaction, [1]. At near 100% oxygen conversion, if reactions [2] and [3] were suppressed, C_2H_6 conversion would increase because the oxygen channelled to the selective oxidation reaction

would convert more C_2H_6 molecules in reaction [1] than in reactions [2] and [3].

Burch et al. (14) have studied some chloride-promoted oxide catalysts and suggested that the presence of Cl⁻ ions on the catalyst surface can eliminate the sites for total oxidation and create new active sites for the dehydrogenation of C₂H₆ to C₂H₄, causing C₂H₄ selectivity to be enhanced as a result. Since the formation of CO or CO2 from C₂H₆ requires much more oxygen than the formation of C₂H₄, we suggest that small clusters of less than five oxygen atoms would favour the selective oxidation reaction. For example, if one C₂H₆ molecule is oxidised to CO and H₂O, an oxygen cluster containing at least five oxygen atoms is needed. If the cluster contains less than five oxygen atoms, the C₂H₆ molecule cannot be fully oxidised to CO and H₂O but would be oxidised selectively to C₂H₄. It is possible that the presence of Br⁻ ions could hinder the formation of large oxygen clusters. This would lead to the suppression of CO_x formation and, hence, the enhancement of C₂H₄ selectivity.

For the 50 mol% BaO/Ho₂O₃ catalyst, XRD results indicated that there were ionic substitutions between Ba²⁺ and Ho³⁺, and defects capable of activating oxygen were generated. The TPR, O₂-TPD, and O₂-pulse results showed that the amount of adsorbed oxygen in this sample was large. The results of catalytic performance showed that the conversion of oxygen in the ODE reaction over this catalyst was very high, but the C₂H₆ conversion and C₂H₄ selectivity were relatively low (Table 1). From the CO₂-TPD results, we observed that below 700°C, only a small amount of CO₂ could desorb from the catalyst within the temperature range suitable for the ODE reaction, and a large amount of CO2 was desorbed above 750°C. This means that the surface basicity of 50 mol% BaO/Ho₂O₃ was large and the catalyst was easily poisoned by CO₂ and could not function catalytically below 660°C. For the ODE reaction, sites with medium-tostrong basicity are most suitable. Taking the desorption of CO₂ between 400 and 700°C as an indication of the number of active sites with such strength of basicity, the actual strength of surface basicity of the catalysts followed the sequence of 50 mol% BaBr₂/Ho₂O₃ > Ho₂O₃ > aged 50 mol% BaO/Ho₂O₃. This order is in accord with the fact that the 50 mol% BaBr₂/Ho₂O₃ catalyst showed the highest C₂H₄ selectivity while the aged 50 mol% BaO/Ho₂O₃ catalyst the lowest (Tables 1 and 2). Due to the complete absence of suitable basic sites on the degraded BaO/Ho₂O₃ catalyst, adsorption and reaction of C₂H₄ were the most intense and both C2H6 conversion and C2H4 selectivity were the worst among the three catalysts. At the conditions of near 100% O₂ conversion, the decrease in C₂H₄ selectivity would mean lower C₂H₆ conversion as more oxygen was consumed in the deep oxidation reactions. Hence, for the aged 50 mol% BaO/Ho₂O₃ catalyst, although the oxygen conversion was high, the C₂H₆ conversion was low.

CONCLUSION

Moderate catalytic activity and C₂H₄ selectivity in the ODE reaction were observed over the undoped Ho₂O₃ catalyst. The addition of BaO could not improve the catalytic performance of Ho₂O₃ due to BaCO₃ formation. The performance of Ho₂O₃, however, could be improved significantly by the addition of 50 mol% of BaBr₂. The promotion effects of BaBr2 could be due to several reasons. First, ionic substitutions between the BaBr₂ and Ho₂O₃ phases could generate defects suitable for oxygen activation. Second, the presence of Br⁻ ions could modify the surface basicity of the catalyst, leading to the suppression of C₂H₄ deep oxidation. Third, it is possible that the presence of Br⁻ on the catalyst would favour the formation of small oxygen clusters suitable for C₂H₄ formation. At near 100% oxygen conversion, with the increase in C₂H₄ selectivity, C₂H₆ conversion increased because, compared to the deep oxidation reactions, a less amount of oxygen was required to convert C₂H₆ to C_2H_4 in the selective oxidation of C_2H_6 . However, with the increase in reaction time, there was continuous leaching of bromine, and the 50 mol% BaBr₂/Ho₂O₃ catalyst degenerated to a somewhat aged BaO/Ho₂O₃ catalyst.

ACKNOWLEDGMENTS

The project was supported by the Hong Kong Research Grants Council, UGC (HKBU2050/97P).

REFERENCES

- 1. Wang, D., Rosynek, M. P., and Lunsford, J. H., J. Catal. 151, 155 (1995).
- 2. Conway, S. J., and Lunsford, J. H., J. Catal. 131, 513 (1991).
- Sugiyama, S., Sogabe, K., Miyamoto, T., Hayashi, H., and Moffat, J. B., Catal. Lett. 42, 127 (1996).
- 4. Kennedy, E. M., and Cant, N. W., Appl. Catal. 75, 321 (1991).
- 5. Erdöhelyi, A., Máté, F., and Solymosi, F., J. Catal. 135, 563 (1992).
- 6. Erdöhelyi, A., and Solymosi, F., J. Catal. 129, 497 (1991).
- 7. Kennedy, E. M., and Cant, N. W., Appl. Catal. 87, 171 (1992).
- Yi, G., Hayakawa, T., Andersen, A. G., Suzuki, K., Hamakawa, S., York, A. P. E., Shimizu, M., and Takehira, K., *Catal. Lett.* 38, 189 (1996).
- Chang, Y. F., Somorjai, G. A., and Heinemann, H., J. Catal. 154, 24 (1995).
- 10. Au, C. T., Zhou, X. P., and Wan, H. L., Catal. Lett. 40, 101 (1996).
- Conway, S. J., Wang, D. J., and Lunsford, J. H., Appl. Catal. 79, L1 (1991).
- Baldwin, T. R., Burch, R., Crabb, E. M., Squire, G. D., and Tsang, S. C., Appl. Catal. 56, 219 (1989).
- Lunsford, J. K., Hinson, P. G., Rosynek, M. P., Shi, C., Xu, M., and Yang, X., J. Catal. 147, 301 (1994).
- Burch, R., Crabb, E. M., Squire, G. D., and Tsang, S. C., Catal. Lett. 2, 249 (1989).
- 15. Burch, R., Squire, G. D., and Tsang, S. C., Appl. Catal. 46, 69 (1989).
- 16. Otsuka, K., Hatano, M., and Komatsu, T., Catal. Today 4, 409 (1989).
- Fujimoto, K., Hashimoto, S., Asami, K., Omoto, K., and Tominaga, H., Appl. Catal. 50, 223 (1989).
- 18. Ahmed, S., and Moffat, J. B., J. Catal. 121, 408 (1990).
- 19. Au, C. T., He, H., Lai, S. Y., and Ng, C. F., J. Catal. 159, 280 (1996).

 Au, C. T., Zhang, Y. Q., He, H., Lai, S. Y., and Ng, C. F., J. Catal. 167, 354 (1997).

- 21. Au, C. T., He, H., Lai, S. Y., and Ng, C. F., Appl. Catal. 159, 133 (1997).
- 22. Au, C. T., He, H., Lai, S. Y., and Ng, C. F., J. Catal. 163, 399 (1996).
- 23. Au, C. T., Liu, Y. W., and Ng, C. F., J. Catal. 171, 231 (1997).
- Au, C. T., Zhou, X. P., Liu, Y. W., Ji, W. J., and Ng, C. F., J. Catal. 174, 153 (1998).
- 25. Au, C. T., Chen, K. D., and Ng, C. F., to be published.

- Cotton, F. A., and Wilkinson, G., "Advanced Inorganic Chemistry," 3rd ed., Interscience, New York, 1972.
- 27. Au, C. T., and Zhou, X. P., J. Chem. Soc. Faraday Trans. 93, 485 (1997).
- 28. Au, C. T., and Zhou, X. P., J. Chem. Soc. Faraday Trans. 92, 1793 (1996).
- Osada, Y., Koike, S., Fukushima, T., Ogasawara, S., Shikada, T., and Ikariya, T., *Appl. Catal.* 59, 59 (1990).
- Wang, D. J., Rosynek, M. P., and Lunsford, J. H., J. Phys. Chem. 98, 8371 (1994).